TurboTron® Full Flow and Half Flow Regenerative Blowers/Vacuum Pumps

Gardner Denver patented Full Flow and Half Flow TurboTron® blowers/vacuum pumps are specifically designed to provide continuous flow, pulse-free air, with the versatility to perform in numerous air applications. Its unique capabilities make TurboTron the choice in applications from wastewater treatment aeration and pneumatic conveying to chemical tank agitation and vacuum cleaning. Typical industries for the TurboTron include foundries, plating, plastics, pharmaceutical, pulp and paper and printing. Application assistance is available by contacting your local TurboTron Representative.

KEY FEATURES:

POWERFUL – Installed as a blower or vacuum pump, the TurboTron features a revolutionary impeller design, achieving multistage compression with a single impeller. This unique design represents the best efficiency in the industry. TurboTron delivers quiet, clean, smooth, pulse-free air with pressures to 13 psig and vacuum to 14 "Hg.

QUIET AND PULSE FREE – Noise and vibration are reduced. Even without an accoustical cover, the typical free field noise level is only 82 dBA at three feet, one meter.

TROUBLE-FREE – Turbo Tron is virtually maintenance free. There is only one moving part and no timing gears. The high tensile strength aluminum composite housing is corrosion resistant. Non-binding Teflon® is used in close tolerance areas. Bearings require only occasional greasing and shaft seals are non-contacting and non-wearing.

VALUE – Turbo Tron's revolutionary design, proven dependability and power make this blower/vacuum producer the best investment for the most demanding applications.

Regenerative Blowers/ Vacuum Pumps

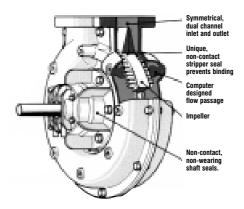
FULL FLOW SERIES

TurboTron

- Airflow to 900 cfm
- Pressure to 13 psig
- Vacuum to 14 "Hg

HALF FLOW SERIES

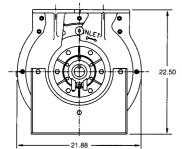
- Airflow to 450 cfm
- Pressure to 13 psig
- Vacuum to 14 "Hg

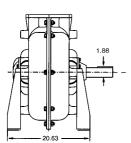


TurboTron® Full and Half Flow Performance and Dimensional Data

REVOLUTIONARY DESIGN

FULL FLOW


4	THE PARTY OF THE P
	0
1	and a


Full Flow Impeller

								(po.	3/				
RPM		2	3	4	5	6	7	8	9	10	11	12	13
2000	SCFM	262	211	164	120								
	HP	5.1	7.1	9.1	11.1								
2800	SCFM	458	415	374	333	295	257	221					
	HP	9.0	11.7	14.3	17.0	19.7	22.5	25.2					
3700	SCFM	668	629	591	555	520	486	454	423	393	364		
	HP	15.3	18.9	22.4	22.8	29.3	32.9	36.6	40.4	44.1	47.6		
4500	SCFM	858	817	780	745	713	682	653	626	600	575	552	529
	HP	22.8	27.4	31.7	35.9	40.1	44.3	48.6	52.9	57.3	61.6	66.0	70.2
			211 164 120 7.1 9.1 11.1 415 374 333 295 257 221 11.7 14.3 17.0 19.7 22.5 25.2 629 591 555 520 486 454 423 393 364 8 18.9 22.4 22.8 29.3 32.9 36.6 40.4 44.1 47.6										

PRESSURE (psia)

							VAUU	Um (11	9) —				
RPM		3	4	5	6	7	8	9	10	11	12	13	14
2000	ICFM	258	217	179	143	109	77						
	HP	3.8	4.8	5.8	6.8	7.7	8.7						
2800	ICFM	428	393	352	312	274	235	199	163	128			
	HP	7.0	8.0	9.3	10.5	11.7	13.0	14.2	15.6	16.9			
3700	ICFM	630	583	536	490	446	402	359	318	278	239		
	HP	10.8	12.8	14.5	16.1	17.7	19.2	20.7	22.4	24.1	25.8		
4500	ICFM	810	757	702	648	596	546	498	452	407	364	323	283
	HP	15.7	18.0	20.3	22.3	24.2	26.0	27.8	29.5	31.3	33.2	35.0	36.7

HALF FLOW

Half Flow Impeller

		PRESSURE (psig)											
RPM		2	3	4	5	6	7	8	9	10	11	12	13
2000	SCFM	131	105	82	60								
	HP	2.8	3.9	5.0	6.1								
2800	SCFM	229	208	187	167	147	129	111					
	HP	5.0	6.4	7.9	9.3	10.8	12.3	13.9					
3700	SCFM	334	314	295	277	260	243	227	211	196	182		
	HP	8.4	10.4	12.3	14.2	16.1	18.1	20.1	22.2	24.3	26.2		
4500	SCFM	429	409	390	373	356	341	327	313	300	288	276	265
	HP	12.5	15.1	17.4	19.7	22.0	24.3	26.7	29.1	31.5	33.9	36.3	38.6
							VACUL	JM ("H	la) _				

		VACUUWI ("Hg)											
RPM		3	4	5	6	7	8	9	10	-11	12	13	14
2000	ICFM	129	109	90	71	55	39						
	HP	2.1	2.6	3.2	3.7	4.2	4.8						
2800	ICFM	214	197	176	156	134	118	99	81	64			
	HP	3.9	4.4	5.1	5.8	6.4	7.1	7.8	8.6	9.3			
3700	ICFM	315	291	268	245	223	201	180	159	139	119		
	HP	5.9	7.0	8.0	8.9	9.7	10.6	11.4	12.3	13.2	14.2		
4500	ICFM	405	378	351	324	298	273	249	226	203	182	161	141
	HP	8.6	9.9	11.2	12.3	13.3	14.3	15.3	16.2	17.2	18.2	19.2	20.2

Performance data for air at standard conditions: Sea level, 14.7 PSIA, 29.92 "Hg, 68°F inlet temperature, 36% relative humidity.

Contact Your TurboTron Representative

Denver

Other Gardner Denver Brochures Available

TurboPak A Blower/ Vacuum Pump System

Engineered Solutions

For additional information, contact your local representative or

Gardner Denver Blower Division

100 Gardner Park, Peachtree City, GA 30269 Toll Free 800-543-7736 ext. 414 Phone 770-632-5000 • Fax 770-486-5629 E-mail: blowersmktg@gardnerdenver.com Visit our web site: www.gardnerdenver.com For Parts Information, Contact:

Gardner Denver Blower Division Customer Service Toll Free 800-982-3009 Phone 770-632-5000 • Fax 770-486-5629

<u>Gardner</u>